Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Journal of Zhejiang University. Medical sciences ; (6): 267-276, 2021.
Article in English | WPRIM | ID: wpr-879970

ABSTRACT

Transient receptor potential M2 (TRPM2) ion channel is a non-selective cationic channel that can permeate calcium ions, and plays an important role in neuroinflammation, ischemic reperfusion brain injury, neurodegenerative disease, neuropathic pain, epilepsy and other neurological diseases. In ischemic reperfusion brain injury, TRPM2 mediates neuronal death by modulating the different subunits of glutamate N-methyl-D-aspartic acid receptor in response to calcium/zinc signal. In Alzheimer's disease, TRPM2 is activated by reactive oxygen species generated by β-amyloid peptide to form a malignant positive feedback loop that induces neuronal death and is involved in the pathological process of glial cells by promoting inflammatory response and oxidative stress. In epilepsy, the TRPM2-knockout alleviates epilepsy induced neuronal degeneration by inhibiting autophagy and apoptosis related proteins. The roles of TRPM2 channel in the pathogenesis of various central nervous system diseases and its potential drug development and clinical application prospects are summarized in this review.


Subject(s)
Humans , Amyloid beta-Peptides/metabolism , Neurodegenerative Diseases , Neuroglia , TRPM Cation Channels/genetics , Transient Receptor Potential Channels
2.
Journal of Lipid and Atherosclerosis ; : 124-139, 2020.
Article in English | WPRIM | ID: wpr-786077

ABSTRACT

Vascular smooth muscle cells (VSMCs) play a pivotal role in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative (synthetic) and fully differentiated (contractile) phenotypes in response to changes in the vessel environment. Abnormal phenotypic switching of VSMCs is a distinctive characteristic of vascular disorders, including atherosclerosis, pulmonary hypertension, stroke, and peripheral artery disease; however, how the control of VSMC phenotypic switching is dysregulated under pathological conditions remains obscure. Canonical transient receptor potential (TRPC) channels have attracted attention as a key regulator of pathological phenotype switching in VSMCs. Several TRPC subfamily member proteins—especially TRPC1 and TRPC6—are upregulated in pathological VSMCs, and pharmacological inhibition of TRPC channel activity has been reported to improve hypertensive vascular remodeling in rodents. This review summarizes the current understanding of the role of TRPC channels in cardiovascular plasticity, including our recent finding that TRPC6 participates in aberrant VSMC phenotype switching under ischemic conditions, and discusses the therapeutic potential of TRPC channels.


Subject(s)
Atherosclerosis , Cell Plasticity , Homeostasis , Hypertension, Pulmonary , Muscle, Smooth, Vascular , Peripheral Arterial Disease , Phenotype , Plastics , Rodentia , Stroke , Transient Receptor Potential Channels , Vascular Remodeling
3.
Chinese Acupuncture & Moxibustion ; (12): 1328-1334, 2020.
Article in Chinese | WPRIM | ID: wpr-877536

ABSTRACT

OBJECTIVE@#To observe the effect of Miao medicinal acupuncture therapy on transient receptor potential vanilloid (TRPV) channel in knee joint synovial tissue of the rabbits with knee osteoarthritis (KOA) model and to explore the mechanism of Miao medicinal acupuncture therapy in treatment of KOA.@*METHODS@#Of 34 New Zealand male rabbits, 6 rabbits were selected randomly as the normal group. KOA model was established in the rest rabbits by injecting a mixture of papain and L-cysteine in right knee joints. The 24 successfully modeled rabbits were randomized into a model group, a Miao medicinal acupuncture therapy group, a dermal needle group and a smearing group, 6 rabbits in each one. In the Miao medicinal acupuncture therapy group, Miao medicinal acupuncture therapy was adopted, in which, the roller type of dermal needle was used on the surface of right knee joint [a rectangle shape formed by "Xuehai" (SP 10), "Liangqiu" (ST 34), "Yanglingquan" (GB 34) and "Yinlingquan" (SP 9)], rolling in a " shape, on which, Miao medicinal solution was smeared in advance. In the dermal needle group, the rolling stimulation was exerted on the right the right knee joint surface with the roller type of dermal needle. In the smearing group, Miao medicinal solution was smeared on the right knee joint surface. The intervention was given once every two days, 3 times weekly and the intervention was exerted consecutively for 4 weeks. Successively, on day 1, 21, 28, 35, 42 and 49 of experiment, paw withdrawal threshold (von Frey threshold) after mechanical stimulation was detected in the rabbits. HE staining was adopted to observe the histomorphological changes of the right knee joint cartilage in the rabbits. ELISA was used to determine the contents of interleukin-1 (IL-1β) and tumor necrosis factor-α (TNF-α) in the right knee synovial fluid. Western blot method and real-time PCR were used to determine the relative expressions of protein and mRNA of TRPV1 and TRPV4 in knee synovial tissue of the rabbits.@*RESULTS@#Compared with the normal group, on day 49 of experiment, von Frey threshold was reduced significantly in the rabbits of the model group (@*CONCLUSION@#Miao medicinal acupuncture therapy plays a role in treatment of KOA probably through inhibiting the expressions of IL-1β and TNF-α of knee synovial fluid and down-regulating the expressions of protein and mRNA of TRPV1 and TRPV4 in knee synovial tissue.


Subject(s)
Animals , Male , Rabbits , Acupuncture Therapy , Knee Joint , Osteoarthritis, Knee/therapy , Synovial Fluid , Transient Receptor Potential Channels
4.
Journal of Central South University(Medical Sciences) ; (12): 766-773, 2020.
Article in English | WPRIM | ID: wpr-827413

ABSTRACT

OBJECTIVES@#To investigate the role of transient receptor potential cation channel subfamily M member 2 (TRPM2) in hepatic ischemia-reperfusion injury of mouse (HIRI) and the possible mechanisms.@*METHODS@#Sixty adult male C57BL/6 mice were randomly divided into 4 groups: a sham group (S group), a HIRI model group (M group), a TRPM2 adenovirus interference vector group (T group), and a TRPM2 adenovirus control vector group (C group) (=15 in each group). The liver tissues of mice before perfusion were obtained. The efficiency of adenovirus infection was detected by fluorescence microscopy, and the silencing efficiency of adenovirus against TRPM2 was detected by real-time PCR.The abdominal aorta blood and liver tissues were collected from mice at 2, 4 and 8 h after reperfusion. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum of mice were detected. Hepatic pathological changes were examined by hematoxylin-eosin (HE) staining. The protein expression of TRPM2 and Rac family small GTPase 1 (RAC1) in liver tissues was detected by Western blotting. Changes of malondialdehyde (MDA), superoxide dismutase (SOD) and myeloperoxidase (MPO) activities in liver tissues were detected by enzyme-linked immunosorbent assay.@*RESULTS@#A strong signal of green fluorescence was observed in the liver tissues of mice in the T and C groups compared to the S or M group. Compared with the S, M or C group, the expression of TRPM2 mRNA in liver tissue in the T group was significantly down-regulated (all <0.05). The morphology of hepatocytes was normal in the S group under light microscope.Hepatic sinus dilatation, congestion, hepatocyte degeneration, central necrosis of lobule, and massive inflammatory granulocyte infiltration were observed in the M and C group, respectively. The degree of hepatocyte damage in the T group was significantly reduced compared with that in the M and C group, respectively. Compared with the S group, the serum ALT and AST activities in the M, T and C groups were significantly increased at 2, 4 and 8 h after reperfusion (all <0.05). Compared with the M or C group, the serum ALT and AST activities in the T group were significantly lower in serum of mice at 2, 4, and 8 h after reperfusion (all <0.05). Compared with the M or C group, the serum SOD activity in the T group was significantly increased at 2, 4, and 8 h after reperfusion (all <0.05), while the serum MDA and MPO activities were significantly decreased (all <0.05). The protein expression of TRPM2 and RAC1 in liver tissues in the T group were significantly lower than those in the M and C groups at 2, 4 and 8 h after reperfusion (all <0.05).@*CONCLUSIONS@#Pretreatment with TRPM2 adenovirus interference vector can effectively silence TRPM2 gene expression in liver tissues of mice and attenuate HIRI, which may be related to inhibiting oxidative stress and reducing the expression of RAC1 protein.


Subject(s)
Animals , Male , Mice , Alanine Transaminase , Aspartate Aminotransferases , Liver , Mice, Inbred C57BL , Neuropeptides , Rats, Sprague-Dawley , Reperfusion Injury , TRPM Cation Channels , Genetics , Transient Receptor Potential Channels , rac1 GTP-Binding Protein
5.
The Korean Journal of Physiology and Pharmacology ; : 101-110, 2020.
Article in English | WPRIM | ID: wpr-787134

ABSTRACT

Transient receptor potential canonical 4 (TRPC4) channel is a nonselective calcium-permeable cation channels. In intestinal smooth muscle cells, TRPC4 currents contribute more than 80% to muscarinic cationic current (mIcat). With its inward-rectifying current-voltage relationship and high calcium permeability, TRPC4 channels permit calcium influx once the channel is opened by muscarinic receptor stimulation. Polyamines are known to inhibit nonselective cation channels that mediate the generation of mIcat. Moreover, it is reported that TRPC4 channels are blocked by the intracellular spermine through electrostatic interaction with glutamate residues (E728, E729). Here, we investigated the correlation between the magnitude of channel inactivation by spermine and the magnitude of channel conductance. We also found additional spermine binding sites in TRPC4. We evaluated channel activity with electrophysiological recordings and revalidated structural significance based on Cryo-EM structure, which was resolved recently. We found that there is no correlation between magnitude of inhibitory action of spermine and magnitude of maximum current of the channel. In intracellular region, TRPC4 attracts spermine at channel periphery by reducing access resistance, and acidic residues contribute to blocking action of intracellular spermine; channel periphery, E649; cytosolic space, D629, D649, and E687.


Subject(s)
Amino Acids , Binding Sites , Calcium , Cytosol , Glutamic Acid , Myocytes, Smooth Muscle , Permeability , Polyamines , Receptors, Muscarinic , Spermine , Transient Receptor Potential Channels
6.
Acta Academiae Medicinae Sinicae ; (6): 208-215, 2019.
Article in Chinese | WPRIM | ID: wpr-776048

ABSTRACT

Objective To explore the effects of cathepsin B(CTSB)on the activation of nucleotide-binding domain and leucine-rich-repeat-containing family and pyrin domain-containing 3(NLRP3)inflammasome via transient receptor potential mucolipin-1(TRPML1)in cell oxidative stress model and specific gene silencing cell model. Methods BV2 cells cultured in vivo were treated separately or simultaneously with hydrogen peroxide(HO),calcium-sensitive receptor agonist gadolinium trichloride(GdCl),and CTSB inhibitor CA-074Me,and interleukin-1(IL-1)beta and caspase-1 protein were detected by enzyme-linked immunosorbent assay.The growth activity of BV2 cells in each group was measured by MTT.BV2 cells were treated with different concentrations of HO.Cystatin C mRNA and TRPML1 mRNA in BV2 cells were detected by real-time quantitative polymerase chain reaction and the proteins of TRPML1,CTSB,cathepsin D(CTSD),cathepsin L(CTSL)and cathepsin V(CTSV)were detected by Western blot.Specific small interfering RNA was designed for TRPML1 gene target sequence.TRPML1 gene silencing cell lines(named Tr-si-Bv2 cells)were established in BV2 cells and treated with or without HO.TRPML1,CTSB and transcription factor EB(TFEB)proteins in Tr-si-Bv2 cells or control cells were detected by Western blot. Results After treatment with HO,the expression of caspase-1 protein and NLRP3 mRNA in BV2 cells was increased,and IL-1beta protein in BV2 cells was significantly increased after treatment with GdCl(P=0.0036).After treatment with CA-074Me,the doses of NLRP3 mRNA(P=0.037),caspase-1(P=0.021),and IL-1β(P= 0.036)were significantly reduced.Cells in the HO group and HO+GdCl group grew more slowly.The expressions of CTSB mRNA and TRPML1 mRNA,or CTSB and TRPML1 proteins in BV2 cells in the treatment group with 200 μmol/L of HO concentration were similar.HO-induced CTSB protein expression was inhibited after silencing TRPML1 gene.The changes of other cathepsins were not affected for the different concentration of HO.In the BV2 cells treated with TRPML1 gene silencing,the expression of CTSB protein was significantly reduced and the difference was statistically significant(P=0.021)between the HO +siRNA treatment group and the HO treatment group.Conclusion CTSB regulates the activation of NLRP3 inflammasome in the oxidative stress model of microglia cells,probably mediated by calcium channel protein TRPML1.


Subject(s)
Animals , Mice , Cathepsin B , Metabolism , Cell Line , Gene Silencing , Hydrogen Peroxide , Inflammasomes , Metabolism , Interleukin-1beta , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Metabolism , Oxidative Stress , Pyrin Domain , Transient Receptor Potential Channels , Metabolism
7.
Experimental Neurobiology ; : 578-592, 2019.
Article in English | WPRIM | ID: wpr-763788

ABSTRACT

Depending on the intracellular buffering of calcium by chelation, zinc has the following two apparent effects on neuronal excitability: enhancement or reduction. Zinc increased tonic activity in the depolarized state when neurons were intracellularly dialyzed with EGTA but attenuated the neuronal activity when BAPTA was used as an intracellular calcium buffer. This suggests that neuronal excitability can be modulated by zinc, depending on the internal calcium buffering capacity. In this study, we elucidated the mechanisms of zinc-mediated alterations in neuronal excitability and determined the effect of calcium-related channels on zinc-mediated alterations in excitability. The zinc-induced augmentation of firing activity was mediated via the inhibition of small-conductance calcium-activated potassium (SK) channels with not only the contribution of voltage-gated L-type calcium channels (VGCCs) and ryanodine receptors (RyRs), but also through the activation of VGCCs via melastatin-like transient receptor potential channels. We suggest that zinc modulates the dopaminergic neuronal activity by regulating not only SK channels as calcium sensors, but also VGCCs or RyRs as calcium sources. Our results suggest that the cytosolic calcium-buffering capacity can tightly regulate zinc-induced neuronal firing patterns and that local calcium-signaling domains can determine the physiological and pathological state of synaptic activity in the dopaminergic system.


Subject(s)
Animals , Rats , Calcium , Calcium Channels, L-Type , Cytosol , Dopaminergic Neurons , Egtazic Acid , Electrophysiology , Fires , Neurons , Potassium , Ryanodine Receptor Calcium Release Channel , Transient Receptor Potential Channels , Zinc
8.
The Korean Journal of Physiology and Pharmacology ; : 357-366, 2019.
Article in English | WPRIM | ID: wpr-761800

ABSTRACT

Gα(q)-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate (PI(4,5)P₂) depletion. When PI(4,5)P₂ depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon Gα(q)-phospholipase C β (Gα(q)-PLCβ) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in PLCβ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by Ca²⁺ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic Ca²⁺ due to Ca²⁺ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following PI(4,5)P₂ depletion.


Subject(s)
Calcium , Cytoplasm , Endoplasmic Reticulum , GTP-Binding Proteins , HEK293 Cells , Inositol , Phosphatidylinositol 4,5-Diphosphate , Phospholipases , Phosphotransferases , Protein Kinase C , Transient Receptor Potential Channels , Type C Phospholipases
9.
The Korean Journal of Physiology and Pharmacology ; : 219-227, 2019.
Article in English | WPRIM | ID: wpr-761782

ABSTRACT

Polycystic kidney disease 2-like-1 (PKD2L1), polycystin-L or transient receptor potential polycystin 3 (TRPP3) is a TRP superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. Although the calmodulin (CaM) inhibitor, calmidazolium, is an activator of the PKD2L1 channel, the activating mechanism remains unclear. The purpose of this study is to clarify whether CaM takes part in the regulation of the PKD2L1 channel, and if so, how. With patch clamp techniques, we observed the current amplitudes of PKD2L1 significantly reduced when coexpressed with CaM and CaMΔN. This result suggests that the N-lobe of CaM carries a more crucial role in regulating PKD2L1 and guides us into our next question on the different functions of two lobes of CaM. We also identified the predicted CaM binding site, and generated deletion and truncation mutants. The mutants showed significant reduction in currents losing PKD2L1 current-voltage curve, suggesting that the C-terminal region from 590 to 600 is crucial for maintaining the functionality of the PKD2L1 channel. With PKD2L1608Stop mutant showing increased current amplitudes, we further examined the functional importance of EF-hand domain. Along with co-expression of CaM, ΔEF-hand mutant also showed significant changes in current amplitudes and potentiation time. Our findings suggest that there is a constitutive inhibition of EF-hand and binding of CaM C-lobe on the channel in low calcium concentration. At higher calcium concentration, calcium ions occupy the N-lobe as well as the EF-hand domain, allowing the two to compete to bind to the channel.


Subject(s)
Binding Sites , Calcium , Calcium Signaling , Calmodulin , Ion Channels , Ions , Patch-Clamp Techniques , Polycystic Kidney Diseases , Transient Receptor Potential Channels
10.
The Korean Journal of Physiology and Pharmacology ; : 151-159, 2019.
Article in English | WPRIM | ID: wpr-728013

ABSTRACT

Pruritus (itching) is classically defined as an unpleasant cutaneous sensation that leads to scratching behavior. Although the scientific criteria of classification for pruritic diseases are not clear, it can be divided as acute or chronic by duration of symptoms. In this study, we investigated whether skin injury caused by chemical (contact hypersensitivity, CHS) or physical (skin-scratching stimulation, SSS) stimuli causes initial pruritus and analyzed gene expression profiles systemically to determine how changes in skin gene expression in the affected area are related to itching. In both CHS and SSS, we ranked the Gene Ontology Biological Process terms that are generally associated with changes. The factors associated with upregulation were keratinization, inflammatory response and neutrophil chemotaxis. The Kyoto Encyclopedia of Genes and Genomes pathway shows the difference of immune system, cell growth and death, signaling molecules and interactions, and signal transduction pathways. Il1a , Il1b and Il22 were upregulated in the CHS, and Tnf, Tnfrsf1b, Il1b, Il1r1 and Il6 were upregulated in the SSS. Trpc1 channel genes were observed in representative itching-related candidate genes. By comparing and analyzing RNA-sequencing data obtained from the skin tissue of each animal model in these characteristic stages, it is possible to find useful diagnostic markers for the treatment of itching, to diagnose itching causes and to apply customized treatment.


Subject(s)
Animals , Mice , Biological Phenomena , Chemotaxis , Classification , Cytokines , Dermatitis, Contact , Gene Expression , Gene Ontology , Genome , Hypersensitivity , Immune System , Interleukin-6 , Models, Animal , Neutrophils , Pruritus , RNA , Sensation , Sequence Analysis, RNA , Signal Transduction , Skin , Transcriptome , Transient Receptor Potential Channels , Up-Regulation , Wound Healing
11.
Annals of Dermatology ; : 265-275, 2018.
Article in English | WPRIM | ID: wpr-715500

ABSTRACT

Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca²⁺) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca²⁺ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca²⁺ release from intracellular stores, such as the ER and Ca²⁺ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.


Subject(s)
Calcium Channels , Calcium , Dermatitis, Atopic , Endoplasmic Reticulum , Epidermis , Homeostasis , Intercellular Junctions , Ions , Keratinocytes , Permeability , Psoriasis , Skin Diseases , Skin , Transient Receptor Potential Channels
12.
Neuroscience Bulletin ; (6): 120-142, 2018.
Article in English | WPRIM | ID: wpr-777050

ABSTRACT

Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.


Subject(s)
Animals , Humans , Pain , Metabolism , Pruritus , Metabolism , Transient Receptor Potential Channels , Metabolism
13.
Biomolecules & Therapeutics ; : 471-481, 2017.
Article in English | WPRIM | ID: wpr-38711

ABSTRACT

The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.


Subject(s)
Humans , Arrhythmias, Cardiac , Atherosclerosis , Cardiomegaly , Cardiovascular Diseases , Cerebrovascular Disorders , Hypertension , Hypertension, Pulmonary , Relaxation , Reperfusion Injury , Transient Receptor Potential Channels
14.
Protein & Cell ; (12): 834-847, 2017.
Article in English | WPRIM | ID: wpr-756924

ABSTRACT

TRPML1 channel is a non-selective group-2 transient receptor potential (TRP) channel with Ca permeability. Located mainly in late endosome and lysosome of all mammalian cell types, TRPML1 is indispensable in the processes of endocytosis, membrane trafficking, and lysosome biogenesis. Mutations of TRPML1 cause a severe lysosomal storage disorder called mucolipidosis type IV (MLIV). In the present study, we determined the cryo-electron microscopy (cryo-EM) structures of Mus musculus TRPML1 (mTRPML1) in lipid nanodiscs and Amphipols. Two distinct states of mTRPML1 in Amphipols are added to the closed state, on which could represent two different confirmations upon activation and regulation. The polycystin-mucolipin domain (PMD) may sense the luminal/extracellular stimuli and undergo a "move upward" motion during endocytosis, thus triggering the overall conformational change in TRPML1. Based on the structural comparisons, we propose TRPML1 is regulated by pH, Ca, and phosphoinositides in a combined manner so as to accommodate the dynamic endocytosis process.


Subject(s)
Animals , Humans , Mice , Calcium , Metabolism , Cryoelectron Microscopy , Endocytosis , Endosomes , Metabolism , Gene Expression , HEK293 Cells , Hydrogen-Ion Concentration , Lysosomes , Metabolism , Models, Biological , Mucolipidoses , Genetics , Metabolism , Pathology , Nanostructures , Chemistry , Phosphatidylinositols , Metabolism , Transgenes , Transient Receptor Potential Channels , Chemistry , Genetics , Metabolism
15.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 434-440, 2016.
Article in English | WPRIM | ID: wpr-812613

ABSTRACT

TRPA1 channels are non-selective cation channels that could be activated by plant-derived pungent products, including gingerol, a main active constituent of ginger. Ginger could improve the digestive function; however whether ginger improves the digestive function through activating TRPA1 receptor in gastrointestinal tract has not been investigated. In the present study, gingerol was used to stimulate cell lines (RIN14B or STC-1) while depletion of extracellular calcium. TRPA1 inhibitor (rethenium red) and TRPA1 gene silencing via TRPA1-specific siRNA were also used for mechanistic studies. The intracellular calcium and secretion of serotonin or cholecystokinin were measured by fura-2/AM and ELISA. Stimulation of those cells with gingerol increased intracellular calcium levels and the serotonin or cholecystokinin secretion. The gingerol-induced intracellular calcium increase and secretion (serotonin or cholecystokinin) release were completely blocked by ruthenium red, EGTA, and TRPA1-specific siRNA. In summary, our results suggested that gingerol derived from ginger might improve the digestive function through secretion releasing from endocrine cells of the gut by inducing TRPA1-mediated calcium influx.


Subject(s)
Humans , Calcium , Metabolism , Calcium Channels , Genetics , Metabolism , Catechols , Pharmacology , Cell Line , Fatty Alcohols , Pharmacology , Gastrointestinal Tract , Metabolism , Ginger , Chemistry , Nerve Tissue Proteins , Genetics , Metabolism , Plant Extracts , Pharmacology , TRPA1 Cation Channel , Transient Receptor Potential Channels , Genetics , Metabolism
16.
Korean Journal of Obesity ; : 1-8, 2015.
Article in English | WPRIM | ID: wpr-761607

ABSTRACT

Brown adipose tissue (BAT) is a site of sympathetically activated non-shivering thermognenesis during cold exposure and after spontaneous hyperphagia, thereby involving in the autonomic regulation of energy balance and body fatness. Recent radionuclide studies have demonstrated the existence of metabolically active BAT in adult humans. Human BAT is activated by acute cold exposure, particularly in winter, and contributes to cold-induced increase in whole-body energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased energy expenditure and decreased body fatness. Thus, BAT is a promising target for combating obesity and related metabolic disorders in humans.


Subject(s)
Adult , Animals , Humans , Mice , Adipose Tissue , Adipose Tissue, Brown , Eating , Energy Metabolism , Hyperphagia , Obesity , Transient Receptor Potential Channels
17.
Intestinal Research ; : 227-232, 2015.
Article in English | WPRIM | ID: wpr-96061

ABSTRACT

Proton pump inhibitors (PPIs) are widely used though an association with hypomagnesaemia and hypocalcaemia has only been described since 2006. Patients typically present after years of stable dosing with musculoskeletal, neurological or cardiac arrhythmic symptoms, but it is likely that many cases are under-recognised. Magnesium levels resolve rapidly on discontinuation of PPI therapy and hypomagnesaemia recurs rapidly on rechallenge with any agent in the class. The cellular mechanisms of magnesium homeostasis are increasingly being understood, including both passive paracellular absorption through claudins and active transcellular transporters, including the transient receptor potential channels (TRPM6) identified in the intestine and nephron. PPIs may alter luminal pH by modulating pancreatic secretions, affecting non-gastric H+K+ATPase secretion, altering transporter transcription or channel function. A small reduction in intestinal absorption appears pivotal in causing cumulative deficiency. Risk factors have been associated to help identify patients at risk of this effect but clinical vigilance remains necessary for diagnosis.


Subject(s)
Humans , Absorption , Claudins , Diagnosis , Fatigue , Homeostasis , Hydrogen-Ion Concentration , Intestinal Absorption , Intestines , Magnesium , Nephrons , Phenobarbital , Proton Pump Inhibitors , Risk Factors , Transcytosis , Transient Receptor Potential Channels
18.
Rev. Esc. Enferm. USP ; 48(spe): 53-58, 08/2014.
Article in English | LILACS, BDENF | ID: lil-731286

ABSTRACT

Objective To understand the experiences and expectations of nurses in the treatment of women with chronic venous ulcers. Method Phenomenological research was based on Alfred Schütz, whose statements were obtained in January, 2012, through semi-structured interviews with seven nurses. Results The nurse reveals the difficulties presented by the woman in performing self-care, the perceived limitations in the treatment anchored in motivation, and the values and beliefs of women. It showed professional frustration because venous leg ulcer recurrence, lack of inputs, interdisciplinary work and training of nursing staff. There was an expected adherence to the treatment of women, and it emphasized the need for ongoing care, supported self-care and standard practices in treatment. Conclusion That treatment of chronic venous leg ulcers constitutes a challenge that requires collective investment, involving women, professionals, managers and health institutions. .


Objetivo Comprender las experiencias y expectativas de enfermeras en el tratamiento de mujeres con úlcera venosa crónica. Método Investigación fenomenológica fundamentada en Alfred Schutz, que buscó Se realizó entrevista semiestructurada con siete enfermeras, en enero del 2012. Resultados La enfermera revela dificultades presentadas por la mujer para realizar el autocuidado, percibe limitaciones en el tratamiento relacionadas con la desmotivación, los valores y las creencias de las mujeres. Refiere frustración profesional debido a la recidiva de la lesión, a la falta de insumos, al deficiente trabajo interdisciplinar y a la limitada capacitación del equipo de enfermeras. Espera la adhesión de la mujer al tratamiento y resalta la necesidad del cuidado continuo, del autocuidado apoyado y de estandarizar conductas de tratamiento. Conclusión El tratamiento de la úlcera venosa crónica es un desafío que requiere contribución colectiva, involucrando a las mujeres, a los profesionales, a los gestores y a las instituciones de salud. .


Objetivo Compreender as experiências e expectativas de enfermeiras no tratamento de mulheres com úlcera venosa crônica na Atenção Primária à Saúde. Método Pesquisa fundamentada na fenomenologia social de Alfred Schütz, com depoimentos obtidos em janeiro de 2012, por meio de entrevista semiestruturada com sete enfermeiras. Resultados As enfermeiras revelam dificuldades apresentadas pelas mulheres com úlcera venosa crônica para realizar o autocuidado, percebem limitações na terapêutica ancoradas na desmotivação e nos valores e crenças das mulheres. Referem frustração profissional em razão da recidiva da lesão, falta de insumos e tecnologia, de trabalho interdisciplinar e da capacitação da equipe de enfermagem. Esperam a adesão das mulheres ao tratamento e ressaltam a necessidade do cuidado contínuo, do autocuidado apoiado e da padronização de condutas no tratamento. Conclusão O tratamento da úlcera venosa crônica constitui-se em um desafio que requer investimento coletivo, envolvendo a mulher, os profissionais, os gestores e as instituições de saúde. .


Subject(s)
Animals , Caenorhabditis elegans Proteins/isolation & purification , Caenorhabditis elegans/metabolism , Cell Membrane/metabolism , Ion Channels/isolation & purification , Ion Channels/metabolism , Nerve Tissue Proteins/isolation & purification , Nerve Tissue Proteins/metabolism , Nervous System/metabolism , Neurons, Afferent/metabolism , Sensation/genetics , Amino Acid Sequence/genetics , Base Sequence/genetics , Behavior, Animal/drug effects , Behavior, Animal/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Capsaicin/pharmacology , Cell Compartmentation/genetics , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Gene Expression Regulation/physiology , Ion Channels/genetics , Ion Channels/ultrastructure , Molecular Sequence Data , Mutation/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/ultrastructure , Nervous System/cytology , Nervous System/drug effects , Neurons, Afferent/cytology , Neurons, Afferent/drug effects , Pain/genetics , Pain/metabolism , Pain/physiopathology , Phylogeny , Receptors, Drug/drug effects , Receptors, Drug/metabolism , Receptors, Drug/ultrastructure , Sensation/drug effects , Signal Transduction/genetics , TRPV Cation Channels , Transient Receptor Potential Channels
19.
Chinese Journal of Applied Physiology ; (6): 274-278, 2014.
Article in Chinese | WPRIM | ID: wpr-236327

ABSTRACT

<p><b>OBJECTIVE</b>To explore the effects of chronic hypoxia on left and right ventricular function and the expression of cardiac transient receptor potential canonical (TRPC) channels in rats.</p><p><b>METHODS</b>Forty eight SD male rats were randomly divided into control group (CON) and chronic hypoxic pulmonary hypertension model group (CH) (n = 24). In CH group, rats were exposed in chronic hypoxia environment (10% +/- 0.2% O2) to induce myocardial hypertrophy. After 3 weeks, mean systemic arterial pressure (mSAP), right ventricular systolic pressure (RVSP), left ventricular systolic pressure (LVSP), left or right ventricular pressure maximum rate of rise (LV/RV + dp/dt(max)), left or right ventricular pressure maximum rate of descent (LV/RV-dp/dt(max)), right ventricular hypertrophy index (RVMI) and left ventricular hypertrophy index (LVMI) were measured. Left and right ventricular myocardium tissue sections were stained by HE and observed under light microscope. Real-time polymerase chain reaction (real-time-PCR) and Western blot were performed to detect the expression of TRPC subfamily.</p><p><b>RESULTS</b>RVSP, RVMI, RV + dp/dt(max) and RV-dp/dt(max) were markedly elevated in CH group (P < 0.01) in comparison to CON group. LVMI was markedly reduced in CH group in comparison to CON group (P < 0.01). LVSP, LV + dp/dt(max) and LV- dp/dt(max) had no significant changes in CH group in comparison to CON group. Right ventricular myocardial cells of CH group became thick, the nuclei stained deeply, the shape of nuclei became not regularity. Left ventricular myocardial fibers did not change significantly. There was significant difference in the levels of mRNA and protein of TRPC1 between CON and CH groups.</p><p><b>CONCLUSION</b>For three weeks exposed to chronic hypoxia induced right ventricular hypertrophy specifically, raised the mRNA and protein expression of TRPC1 on right ventricular myocardial cells . TRPC1 might be involved in the development of cardiac hypertrophy.</p>


Subject(s)
Animals , Male , Rats , Disease Models, Animal , Hypertension, Pulmonary , Metabolism , Hypoxia , Metabolism , Rats, Sprague-Dawley , Transient Receptor Potential Channels , Metabolism , Ventricular Function, Left , Physiology , Ventricular Function, Right , Physiology
20.
Diabetes & Metabolism Journal ; : 22-29, 2013.
Article in English | WPRIM | ID: wpr-199825

ABSTRACT

Brown adipose tissue (BAT) is recognized as the major site of sympathetically activated nonshivering thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controling whole-body energy expenditure and body fat. In adult humans, BAT has long been believed to be absent or negligible, but recent studies using fluorodeoxyglucose-positron emission tomography, in combination with computed tomography, demonstrated the existence of metabolically active BAT in healthy adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in energy expenditure. The metabolic activity of BAT differs among individuals, being lower in older and obese individuals. Thus, BAT is recognized as a regulator of whole-body energy expenditure and body fat in humans as in small rodents, and a hopeful target combating obesity and related disorders. In fact, there are some food ingredients such as capsaicin and capsinoids, which have potential to activate and recruit BAT via activity on the specific receptor, transient receptor potential channels, thereby increasing energy expenditure and decreasing body fat modestly and consistently.


Subject(s)
Adult , Humans , Adipose Tissue , Adipose Tissue, Brown , Capsaicin , Cold Temperature , Energy Metabolism , Hyperphagia , Obesity , Rodentia , Thermogenesis , Transient Receptor Potential Channels
SELECTION OF CITATIONS
SEARCH DETAIL